12,835 research outputs found

    Video Captioning with Guidance of Multimodal Latent Topics

    Full text link
    The topic diversity of open-domain videos leads to various vocabularies and linguistic expressions in describing video contents, and therefore, makes the video captioning task even more challenging. In this paper, we propose an unified caption framework, M&M TGM, which mines multimodal topics in unsupervised fashion from data and guides the caption decoder with these topics. Compared to pre-defined topics, the mined multimodal topics are more semantically and visually coherent and can reflect the topic distribution of videos better. We formulate the topic-aware caption generation as a multi-task learning problem, in which we add a parallel task, topic prediction, in addition to the caption task. For the topic prediction task, we use the mined topics as the teacher to train a student topic prediction model, which learns to predict the latent topics from multimodal contents of videos. The topic prediction provides intermediate supervision to the learning process. As for the caption task, we propose a novel topic-aware decoder to generate more accurate and detailed video descriptions with the guidance from latent topics. The entire learning procedure is end-to-end and it optimizes both tasks simultaneously. The results from extensive experiments conducted on the MSR-VTT and Youtube2Text datasets demonstrate the effectiveness of our proposed model. M&M TGM not only outperforms prior state-of-the-art methods on multiple evaluation metrics and on both benchmark datasets, but also achieves better generalization ability.Comment: ACM Multimedia 201

    Memory-Efficient Topic Modeling

    Full text link
    As one of the simplest probabilistic topic modeling techniques, latent Dirichlet allocation (LDA) has found many important applications in text mining, computer vision and computational biology. Recent training algorithms for LDA can be interpreted within a unified message passing framework. However, message passing requires storing previous messages with a large amount of memory space, increasing linearly with the number of documents or the number of topics. Therefore, the high memory usage is often a major problem for topic modeling of massive corpora containing a large number of topics. To reduce the space complexity, we propose a novel algorithm without storing previous messages for training LDA: tiny belief propagation (TBP). The basic idea of TBP relates the message passing algorithms with the non-negative matrix factorization (NMF) algorithms, which absorb the message updating into the message passing process, and thus avoid storing previous messages. Experimental results on four large data sets confirm that TBP performs comparably well or even better than current state-of-the-art training algorithms for LDA but with a much less memory consumption. TBP can do topic modeling when massive corpora cannot fit in the computer memory, for example, extracting thematic topics from 7 GB PUBMED corpora on a common desktop computer with 2GB memory.Comment: 20 pages, 7 figure

    A New Approach to Speeding Up Topic Modeling

    Full text link
    Latent Dirichlet allocation (LDA) is a widely-used probabilistic topic modeling paradigm, and recently finds many applications in computer vision and computational biology. In this paper, we propose a fast and accurate batch algorithm, active belief propagation (ABP), for training LDA. Usually batch LDA algorithms require repeated scanning of the entire corpus and searching the complete topic space. To process massive corpora having a large number of topics, the training iteration of batch LDA algorithms is often inefficient and time-consuming. To accelerate the training speed, ABP actively scans the subset of corpus and searches the subset of topic space for topic modeling, therefore saves enormous training time in each iteration. To ensure accuracy, ABP selects only those documents and topics that contribute to the largest residuals within the residual belief propagation (RBP) framework. On four real-world corpora, ABP performs around 1010 to 100100 times faster than state-of-the-art batch LDA algorithms with a comparable topic modeling accuracy.Comment: 14 pages, 12 figure
    • …
    corecore